SAGA binds TBP via its Spt8 subunit in competition with DNA: implications for TBP recruitment.
نویسندگان
چکیده
In yeast, the multisubunit SAGA (Spt-Ada-Gcn5-acetyltransferase) complex acts as a coactivator to recruit the TATA-binding protein (TBP) to the TATA box, a critical step in eukaryotic gene regulation. However, it is unclear which SAGA subunits are responsible for SAGA's direct interactions with TBP and precisely how SAGA recruits TBP to the promoter. We have used chemical crosslinking to identify Spt8 and Ada1 as potential SAGA subunits that interact with TBP, and we find that both Spt8 and SAGA bind directly to TBP monomer in competition with TBP dimer. We further find that Spt8 and SAGA compete with DNA to bind TBP rather than forming a triple complex. Our results suggest a handoff model for SAGA recruitment of TBP: instead of binding together with TBP at the TATA box, activator-recruited SAGA transfers TBP to the TATA box. This simple model can explain SAGA's observed ability to both activate and repress transcription.
منابع مشابه
Characterization of new Spt3 and TATA-binding protein mutants of Saccharomyces cerevisiae: Spt3 TBP allele-specific interactions and bypass of Spt8.
The Spt-Ada-Gcn5-acetyltransferase (SAGA) complex of Saccharomyces cerevisiae is a multifunctional coactivator complex that has been shown to regulate transcription by distinct mechanisms. Previous results have shown that the Spt3 and Spt8 components of SAGA regulate initiation of transcription of particular genes by controlling the level of TATA-binding protein (TBP/Spt15) associated with the ...
متن کاملSite-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3.
The TATA-binding protein (TBP) is critical for transcription by all three nuclear RNA polymerases. In order to identify factors that interact with TBP, the nonnatural photoreactive amino acid rho-benzoyl-phenylalanine (BPA) was substituted onto the surface of Saccharomyces cerevisiae TBP in vivo. Cross-linking of these TBP derivatives in isolated transcription preinitiation complexes or in livi...
متن کاملArchitecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex.
The conserved transcription coactivator SAGA is comprised of several modules that are involved in activator binding, TBP binding, histone acetylation (HAT) and deubiquitination (DUB). Crosslinking and mass spectrometry, together with genetic and biochemical analyses, were used to determine the molecular architecture of the SAGA-TBP complex. We find that the SAGA Taf and Taf-like subunits form a...
متن کاملHistone H3 phosphorylation can promote TBP recruitment through distinct promoter-specific mechanisms.
Histone phosphorylation influences transcription, chromosome condensation, DNA repair and apoptosis. Previously, we showed that histone H3 Ser10 phosphorylation (pSer10) by the yeast Snf1 kinase regulates INO1 gene activation in part via Gcn5/SAGA complex-mediated Lys14 acetylation (acLys14). How such chromatin modification patterns develop is largely unexplored. Here we examine the mechanisms ...
متن کاملDifferential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo.
The multisubunit Saccharomyces cerevisiae SAGA (Spt-Ada-Gcn5-acetyltransferase) complex is required to activate transcription of a subset of RNA polymerase II-dependent genes. However, the contribution of each SAGA component to transcription activation is relatively unknown. Here, using a formaldehyde-based in vivo cross-linking and chromatin immunoprecipitation assay, we have systematically an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 25 16 شماره
صفحات -
تاریخ انتشار 2006